Mrs. Nielsen Honors Chemistry

Name	Date	Period
nume	Dute	i ei iou

Specific Heat Activity How many calories are in your favorite snack food?

Purpose: To build a calorimeter and to determine the amount of energy contained within a kernel of popcorn and a single peanut.

Materials:

- aluminum beverage can (calorimeter)
- thermometer
- 100 mL graduated cylinder
- aluminum foil squares
- paper clips

- matches
- ring stand
- ring clamp
- popcorn, peanuts, etc.

Background Information:

- 1. What is the unit of measurement for heat energy?
- 2. Which unit do we use to measure the amount of energy in food?
- 3. The density of pure water is 1 g/mL. Determine the mass of 50 mL of pure water.
- 4. What does Δ mean?
- 5. What does the prefix kilo- mean?

Scientists can determine the calorie content of food by burning a measured quantity of food in a container surrounded by water and then by measuring the temperature increase in the water. The container in which the calorie determination is done is called a <u>calorimeter</u>. The amount of heat required to raise the temperature of 1 gram of water by 1 $^{\circ}$ C is a calorie.

Measuring Heat Energy $Q = m \times c_p \times \Delta T$

for water, 1.0 calorie 1 gram × 1 °C Mrs. Nielsen Honors Chemistry

Procedure:

1. Build your calorimeter. Draw a picture of what your calorimeter looks like.

- 2. Measure 50 mL of water using a graduated cylinder. <u>Carefully</u> pour this water into your calorimeter.
- 3. Remember, the density of water is 1 g/mL. Record the mass of the water in the data table.
- 4. Carefully measure the temperature of the water in the can (oops, calorimeter) by suspending the thermometer in the water. Record this as the initial water temperature in the data table.
- 5. Place a square of aluminum foil underneath the calorimeter to catch any burning particles.
- 6. Select a piece of popcorn and spear it securely on a straightened paper clip. Be careful not to break the popcorn apart.
- 7. Using a match, carefully light the popcorn piece and place it directly under the calorimeter immediately and hold it there until it is completely burned.
- 8. Watch the temperature carefully. Record the highest temperature as the $\underline{\text{final}}$ temperature of the water.
- 9. Calculate the # of calories in your piece of popcorn. Record this value in the data table.
- 10. Repeat steps 6-9 with a second piece of popcorn. Record your information in the data table.
- 11. Repeat steps 6-10 with a peanut.

Data Table:

Substance	Mass of H ₂ O (g)	Initial H₂O temperature (°C)	Final H₂O temperature (°C)	ΔΤ	Calories

Mrs. Nielsen Honors Chemistry

Questions	
	Ξ

4							
1.	w	hat	IS	α	ca	lori	e?

2. Since the number	of calories	in food is	quite large,	nutrition	labels report	the number of
kilocalories in food.	How many o	alories ar	re in a <u>kiloca</u>	lorie?		

- 3. What is the your average number of calories emitted from one piece of popcorn? Show your work below.
- 4. What is your average number of calories emitted from a (whole) peanut? Show your work below.
- 5. According to your data, how many calories are contained in 35 pieces of popcorn?
- 6. According to your data, how many calories are contained in 35 peanuts?
- 7. How many kilocalories are in 2,800 calories?
- 8. Suppose that a slice of bread, when burned raised the temperature of 1000 g of water from 20 $^{\circ}$ C to 80 $^{\circ}$ C. How many calories of heat are in the slice of bread? Show your work below.
- 9. Suppose that we have a thimble and a bucket, both of which are filled with boiling water at $100 \, ^{\circ}C$. Which one is the hottest? Explain your answer.
- 10. Which of the two objects described in #9 has the most heat energy? Justify your answer.