Name \qquad Date \qquad Period \qquad

Acids and Bases Part II

Warm Up:

1. What is the name for $\mathrm{H}_{3} \mathrm{O}^{+}$ion?
2. What do brackets represent, for example, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?
3. What is an aqueous solution?
4. What does molarity, M, measure?
5. Predict the products of the following neutralization reactions:
a. $\mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{KOH}_{(\mathrm{aq})} \longrightarrow$
b. $\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})} \longrightarrow$
c. $\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow$

Review Naming Acids:

Practice: Name the following acids

1. HF
2. HNO_{3} \qquad
3. $\mathrm{H}_{2} \mathrm{SO}_{4}$
4. HI
5. HBr \qquad
6. HClO_{4} \qquad
7. HNO_{2} \qquad
8. HCl

Acids

Define Acid:

How does one determine the strength of an acid?
*
*

Strong Acid:
ex)

$\mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}+\mathrm{H}^{+}\left(\mathrm{qq)}+\mathrm{NO}_{3}{ }^{-}(\mathrm{aq)}\right.$

Weak Acid:
ex) HCN
$\mathrm{HCN}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(a q)} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(a q)}+\mathrm{CN}^{-}{ }_{(a q)}$
ex) $\mathrm{CH}_{3} \mathrm{COOH}$

* only 1 H is acidic!

There are 3 categories of acids:
Monoprotic acids:
ex)

Diprotic acids:

Triprotic acids:
ex) step 1: $\mathrm{H}_{3} \mathrm{PO}_{4(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftarrows \mathrm{H}_{2} \mathrm{PO}_{4}^{-}{ }_{(a q)}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$ step 2:
step 3:

Bases

Define Base:

Alkaline Solution:

Strong Base:
ex)
$\mathrm{NaOH}_{(\text {(q) }} \longrightarrow \mathrm{Na}^{+}{ }_{(\text {qq) }}+\mathrm{OH}^{-}(\mathrm{aq)}$

Weak Base:
ex) ammonia

Amphoteric:

ex) $\mathrm{H}_{2} \mathrm{O}$
as an acid:
as a base:
pH and pOH

	Acids	Neutral	Bases
pH			
pOH			
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$vs. $\left[\mathrm{OH}^{-}\right]$			
pH vs. pOH			

Equations you need to know:
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$

Road Map to Acid-Base Calculations:

Calculations Involving pH and pOH

Example: A solution has $a\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-7} \mathrm{M}$. Calculate the pH of the solution.

Example: A solution of HBr has a $\mathrm{pH}=4$.
a) Is this solution acidic or alkaline?
b) Determine the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of this solution.
c) What is the pOH of this solution?

Example: You have a $1 \times 10^{-2} \mathrm{M} \mathrm{NaOH}$ solution.
a) Is NaOH an acid or a base? How do you know?
b) Write the equation for the dissociation of NaOH in $\mathrm{H}_{2} \mathrm{O}$.
c) Calculate the $\left[\mathrm{OH}^{-}\right]$in this solution.
d) Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in this solution.
e) Calculate the pH and the pOH of the solution.

